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Model building inmultivariate additive partial
least squares splines via the GCV criterion
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In the literature,much effort has been put intomodeling dependence among variables and their interactions through
nonlinear transformations of predictive variables. In this paper, wepropose a nonlinear generalization of Partial Least
Squares (PLS) using multivariate additive splines. We discuss the advantages and drawbacks of the proposed model,
building it via thegeneralizedcrossvalidationcriterion (GCV) criterion, andshow itsperformanceona realdatasetand
on simulated datasets in comparison to other methods based on splines. Copyright © 2009 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

The fitting of noisy data, especially in high dimensions, with
many correlated predictors is a central topic in the literature of
predictive modeling. Partial Least Squares (PLS), whose origin
dates back to the 1960s [1,2], became a popular method for
the linear prediction and modeling of high dimensional data,
especially in the field of chemometrics. Many papers have
presented nonlinear generalizations of PLS either by replacing the
standard regression functions with nonlinear functions ( e.g. [3]),
or by using spline functions to transform the predictors [4–6].

In this paper, we discuss the potential of generalizing PLS
with multivariate additive spline transformations, a method we
call Multivariate Additive Partial Least Squares Splines (MAPLSS).
A simple version of this method was already proposed by
the first two authors [6]. In the present study, to overcome
the problem of high computational costs due to the use of
multivariate spline transformations, we propose a new MAPLSS
model building stage via the generalized cross validation criterion
(GCV) [7], introducing a backward deletion procedure to prune
the model back. Furthermore via simulation studies, we compare
the performance of MAPLSS to known nonlinear models, such
as BRUTO [8] and Multivariate Adaptive Regression Splines
(MARS) [9], in terms of their accuracy; via real studies, we
present MAPLSS as a component regression based method and
some new explanatory tools of the component plots will be
given.

This multi-response regression method has the ability to:
(1) summarize a set of predictive noisy measurements on
several collinear variables, (2) use different types of predictor
variables, (3) automatically deal with outliers and missing data
and last but not the least, (4) include multivariate variable
interactions. The MAPLSS model can be represented in a form
that separately identifies the contributions of each variable and
those associated with the different multivariate interactions via an
ANOVA decomposition. For the sake of low computational cost,
the GCV has been introduced in the model building stage.

The MAPLSS model involves both univariate [5] and
multivariate B-spline transformations. It is additive because each
fitted response is a sum of transformation functions of both main
and interaction effects of each predictor variable. Using the B-
splines (basis splines) as the transforming functions, both the
chosen predictors and their interactions will be incorporated
into the model. Interactions are simply computed by the tensor
product of main effect B-splines. Thus, a variable interaction
may be introduced into the model by defining a new predictor
in the design matrix. The computational price to be paid by
MAPLSS, through tensor products of B-spline functions, is exactly
proportional to expanding the column dimension of the new
design matrix. In MAPLSS, we focus on the problem of selecting
the most relevant main and interaction variables via the GCV
criterion. The computational procedure will imply a series of
forward/backward phases producing a sequence of models.

The paper is structured as follows: piecewise polynomials,
and in particular univariate and multivariate regression splines,
together with some extensions toward multivariate additive
models, such as BRUTO and MARS are briefly reviewed in
Section 2. Section 3 reviews some of the properties of both
PLS and PLS via Splines (PLSS; [5]). In Section 4, we illustrate
MAPLSS through the ANOVA decomposition model. Details of the
computational procedure of MAPLSS are illustrated presenting
the GCV criterion to validate the model. In Section 5, some
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applications to simulated datasets illustrate the capabilities of
MAPLSS with respect to two known techniques, BRUTO and
MARS, furthermore an example on a real dataset fully describes
the richness of MAPLSS output.

2. UNIVARIATE ANDMULTIVARIATE
REGRESSION SPLINES

Let x = (x1, . . . , xp) be a set of predictors related to a set of
responses y = (y1, . . . , yq) all supposed to be standardized and
measured on the same n individuals with the same statistical
weight 1/n. Let us denote by X and Y the sample data
matrices whose current columns are xi and yj , respectively. To
introduce ideas, we first review some results on multivariate
regression splines. Regression splines are piecewise polynomials
whose coefficients are computed according to a regression
model [18,19]. In the following we discuss the univariate and
bivariate cases and some extensions toward multivariate additive
models like BRUTO and MARS.

2.1. The univariate and bivariate cases

Spline functions of a variable x ∈ IR, denoted s(.) are piecewise
polynomials of degree d on the open interval (x−, x+) that agree
at K points �1, . . . , �K called knots. A set of r = d + 1 + K basis
functions called B-splines Bl (.) is used to represent any spline as a
linear combination

s(x, ˇ) =
r∑

l=1

ˇlBl (x)

Here ˇ = (ˇ1, . . . , ˇr ) is the vector of spline coefficients computed
via regression of y ∈ IR on the Bl (.)

ŷ = s(x, ˆ̌ ) =
r∑

l=1

ˆ̌
lBl (x) (1)

To estimate ˇ we need to construct the n × r centered design
matrix B which is the coding matrix of the sample x through
the B-spline family. Besides the fact that they are numerically
well conditioned and easy to compute by recursion formulas (see
Reference [10,11] for computational and mathematical details)
B-splines are attractive because they vanish outside an interval
called their support which contains their knots. This vanishing
property provides protection against extrapolation for extreme
values of x. Moreover, B-splines may be considered as a set of
fuzzy coding functions since 0 ≤ Bl (x) ≤ 1, and

r∑
l=1

Bl (x) = 1, for x ∈ [x−, x+] (2)

Due to relation (2), the column centered matrix B is not of full
column rank. More precisely we have

rank B ≤ min(n − 1, r − 1)

A real problem using B-splines is related to the selection of the
knots (location and number). In practice, a few well-located knots
often suffices, but optimizing their placement and number in an

automatic way is a difficult problem [12–14] whose solution is
beyond the scope of this paper. To keep the problem simpler, we
will assume that the degree of the B-spline and the sequence of
knots is fixed after an exploration of the data. An ascending or
descending strategy, increasing or decreasing progressively the
degree and the number of knots, can be followed in practice [5].
To include bivariate interactions in our model, we introduce the
tensor product of two B-spline families. Consider x ∈ IR2, and
two sets of basis functions: B1

j (x1) j = 1, . . . , r1, for representing
functions of coordinate x1, and B2

k (x2), k = 1, . . . , r2 for coordinate
x2. Then the r1 × r2 dimensional tensor product basis defined by

Bj,k (x
1, x2) = B1

j (x1)B2
k (x2), j = 1, . . . , r1, k = 1, . . . , r2,

allows us to represent a two-dimensional spline function by

s1,2(x1, x2, ˇ) =
r1∑

j=1

r2∑
k=1

ˇj,kBj,k (x
1, x2)

A natural extension of model (1) is the bivariate ANOVA spline
decomposition

ŷ = s1(x1, ˆ̌ 1) + s2(x2, ˆ̌ 2) + s1,2(x1, x2, ˆ̌ 1,2)

To estimate the spline coefficients, the n × (r1 + r2 + r1r2)
centered super-matrix B = [B1|B2|B1,2] is composed of three
blocks. The first two are the coding matrices obtained by
univariate spline transformations of x1 and x2, respectively. The
columns of the third block are coordinate-by-coordinate products
of the columns of the first two.

In the more general setting of p > 2 dimensions, adding new
interactions of different orders (among three, four, etc. variables)
will permit us to generalize the model to the multivariate case
as illustrated in the following. Note however that the column-
dimension of the design matrix B grows exponentially fast, a fact
that we will consider during model selection.

2.2. Some extensions towardmultivariate additive
regression splinemodels

The real strengths of the adaptive spline methodology, like
TURBO [15], and BRUTO (inspired by TURBO, [8]) lie in its ability
to both select which terms to include and the amount of
smoothing for those included in an efficient way. The BRUTO
algorithm combines backfitting and smoothing parameter
selection, but considers only main variables and not their
interactions. In his MARS (Multivariate adaptive regression spline)
model, Friedman [9] generalized the Least Squares Spline (LSS)
model [18,19] and BRUTO algorithm by including interaction
terms. In MARS, the tuning parameters (number of predictors,
spline degree, placement of knots) are chosen adaptively as in
BRUTO. The particular spline functions used are truncated linear
functions, which are optionally replaced by cubic functions at the
last stage, after all the functions have been chosen and fit. The
result is that MARS is a flexible non-parametric regression model
that attempts to meet the objectives of optimal spline parameters
and optimal detection of predictor and their interactions. The
model can be written in the form

ŷ =
∑
i∈K1

fi(x
i) +

∑
(i,j)∈K2

fi,j (x
i, xj ) + . . . (3)
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where the variable sets denoted by K1, K2, etc, involving
respectively main effects, bivariate interactions, etc., are
automatically selected by the MARS algorithm. Like the LSS
model, however, when two knots are close together, the
truncated linear basis functions can result in ill-conditioned
design matrices. As in LSS, the coefficients are estimated by
minimizing the residual sum of squares, but the real art of MARS
(like for the BRUTO methodology) is in the model building stage.
Starting with only a constant function and all basis functions as
candidates, the forward phase constructs a large model that first
overfits the data and then, subsequently, a backward deletion
procedure is applied to prune the model back. Details can be
found in Friedman [9]. To estimate the number of basis functions
to include in the model, BRUTO and MARS use the Generalized
Cross Validation criterion, GCV, see Reference [15], which presents
attractive computational properties.

3. MULTIVARIATE ADDITIVE PARTIAL
LEAST SQUARES SPLINES

Before introducing the extension to PLS regression [1], we first
review some of the properties of PLS and PLSS [5].

3.1. Quick review of PLS

Although proposed as early as 1966, PLS has been primarily
promoted in the chemometrics literature as an alternative to
ordinary least squares regression, especially when the design
matrix is of much smaller rank than the number of predictors. Like
principal component regression, PLS regression can be viewed as
a projection of response variables Y on linear combinations of
the original predictors X. The resulting transformed predictors
are called latent structures or latent variables. In particular, PLS
chooses the latent variables as a series of orthogonal linear
combinations (under a suitable constraint) that have maximal
covariance with linear combinations of Y. PLS constructs a
sequence of centered and uncorrelated exploratory variables,
i.e. the PLS (latent) components (t1, . . . , tA). The number A of
the retained latent variables, also called the model dimension,
is usually estimated by cross-validation (CV). Because the
components are linear combinations of the original predictors
X, we can write the linear PLS model for the response j as the
following expression.

ŷ j (A) =
p∑

i=1

ˆ̌ j
i (A)xi (4)

Two particular properties make the PLS attractive and establish
a link between the geometrical data analysis and the usual
regression. First, when A = rank X,

PLS(X,Y) ≡ {OLS(X,Yj )}j=1,...,q

if the OLS regression exists.
Second, the principal component analysis, PCA, of X can be

viewed as the ‘self-PLS’ regression of X onto itself,

PLS(X,Y = X) ≡ PCA(X)

3.2. PLSS, an extension toward pure additive models

PLSS is simply the application of linear PLS regression of Y onto
the centered coding matrix B = [B1| . . . |Bp]. It is thus a purely
additive model that depends on the dimension A which, in turn,
depends on tuning parameters as well as the spline parameters
(degree, number and location of knots). The PLSS model, for the
jth response can be written as

ŷ j (A) = s1(x1, ˆ̌ j
1(A)) + . . . + sp(xp, ˆ̌ j

p(A)) (5)

When the dimension A is equal to the rank of B, then PLSS is
identical to the usual Least-Squares Splines estimator, if it exists,

PLSS(X,Y) ≡ {LSS(X,Yj )}j=1,...,q when A = rank (B)

Furthermore, comparing PLSS with the Non-Linear Principal
Component Analysis (NLPCA), see Reference [16], we can say that
NLPCA can be considered as the ‘self-PLSS’ of X onto itself

PLSS(X,Y = X) ≡ NLPCA(X)

Because the predictors are standardized, a simple way of ordering
the predictors with respect to their decreasing influence on ŷ j (A)
is to use as a criterion, the range of the si(xi , ˆ̌ j

i (A)) values of the
transformed sample xi . One can also use that criterion to prune
the model, by eliminating the predictors of low influence. In the
multi-response case, it is important to point out that only effects
that are small in relation to all responses are removed. To stop
the pruning process, the GCV criterion presented in Section 4 is
used to obtain a more parsimonious model (5) resulting in better
out-of-sample predictions.

In order to preserve the advantages of PLSS while including
interaction terms in the model, the next section introduces
MAPLSS that proposes models based on the ANOVA spline
decomposition in the same way as MARS does.

3.3. TheMAPLSSmodel

The price to be paid for incorporating interactions of high
degree grows rapidly with the number of predictors. Like MARS,
MAPLSS starts the model building phase by proposing models
with a large number of predictors. Because MARS is based on
the ordinary least-squares regression at each step of the model
building stage, it allows rapid automatic exploration of candidate
interactions of level two, three or more. In contrast, the same
step in MAPLSS is based on PLS rather than OLS. PLS has well-
known advantages but it comes with a larger computational cost.
For these reasons, we restrict the potential models to those that
include interactions no higher than second order. By restricting
to this class, MAPLSS can still provide efficient and automatic
selection of terms. Certainly this limits the space of possible
models, but in practice, with many variables, including all two-
way interactions as potential predictors usually suffices. In the
same way that PLSS generalizes linear PLS regression, MAPLSS
generalizes PLSS regression with the inclusion of all two-way
interactions. Including interactions, the design matrix B becomes

B = [. . .Bi . . .︸ ︷︷ ︸
i∈K1

| . . .Bk, l . . .︸ ︷︷ ︸
(k, l)∈K2

] (6)
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where K1 and K2 are index sets, respectively, for single variables
and bivariate interactions. As a result, the fit of the response j can
be written as

ŷ j (A) =
∑
i∈K1

si(x
i, ˆ̌ j

i (A)) +
∑

(k, l)∈K2

sk,l (x
k, xl, ˆ̌ j

k,l (A)) (7)

In the case of a small number of predictors, a simple way to
visualize the most influential main effects and interactions on the
jth fitted response is through the inspection of all the possible
ANOVA function plots, curves and surfaces, in decreasing order
according to the range of all the si(xi , ˆ̌ j

i (A)) and sk,l (xk, xl, ˆ̌ j

k,l (A))
transformed data. This presentation is used in MAPLSS to
propose a visual interpretation of the nonlinear influence of the
retained predictors on the responses. However, to select the most
important predictors, an automatic computational approach has
been based on both goodness of fit and prediction criteria.

4. THEMODEL-BUILDING STAGE

The initial step of the MAPLSS model building stage consists of
building a main effects only model. Eventually, this model will be
pruned, but only after two-way interaction terms are considered.
Because each basis function is constructed independently,
MAPLSS, unlike MARS, CART and other tree-based regression
methods, is able to remove main effects during the backward
pruning step while retaining the two-way interaction in that same
variable.

The PLSS spline parameters (including degree of spline,
number and location of knots) are inherited by the MAPLSS
model. Starting with the PLSS additive model, the MAPLSS
building-model phase constructs the index sets K1 and K2

which include the main effects and the bivariate interactions,
respectively that enter in the retained model defined in Equations
(6) and (7). Because of the number of potential basis functions,
the number of candidate models is large, and so one has to use a
goodness of fit and prediction criterion with low computational
costs. The next section illustrates the main aspects of the
computational procedure used by PLS, PLSS and MAPLSS models
to decide the best model size as a compromise between fit and
complexity.

4.1. Fit and prediction in component-basedmodels

The determination of the model size in the estimation of
component-based models is even more difficult in the nonlinear
case. In the literature, the usual approach for choosing the best
dimension is based on cross-validation. It works by creating
G distinct groups of observations (xi , yi), leaving one group
out at a time, and estimating the response of the left out
group by creating models on the remaining points. By repeating
that procedure until the last group of points has been kept
out, the PRESS statistic is computed, that is the sum of the
squared residuals of the G models. For MAPLSS, which adds
interaction terms one at a time to the purely additive PLSS model,
determining the proper dimension to retain using PRESS implies
high computational costs. A more direct way of constructing an
estimate of the unknown prediction squared errors is to correct
average squared residuals (ASR), which, as one example, leads
to the Mallows Cp statistics originally proposed as a covariate-
selection criterion for the linear regression model. As in MARS,

we propose a suitable surrogate to the PRESS statistics, using
a modified form of the GCV criterion (originally proposed by
Reference [7] ). The GCV statistics are applied here in all three
models, linearly with respect to the linear regression on the
uncorrelated components {tk}A

k=1. For PLS it is linear with respect
to the design matrix X and in both PLSS and MAPLSS it is linear
with respect to B. Compared to the linear model the only thing
that changes is that a component tk is a linear combination of
B which also depends on the response Y. The GCV takes the
form

GCV (A, ˛) =
∑q

j=1 ASRj (A)

[1 − ˛ A
n
]2

(8)

where ASRj (A) = 1
n
‖Yj − Ŷj (A)‖2 is the average squared residuals

for the response jmodeled with A components and ˛ represents
a penalty constant to be fixed. The GCV criterion depends
on the selected initial space-dimension A as well on ˛. It is
interesting to observe that the approximation (1 − x)−2 ∼ 1 + 2x

for small values of x = ˛ A
n
, leads to the well-known Cp coefficient

of Mallows [17] when ˛ = 1. In the MARS regression context,
Friedman and Silverman [15] report reasons for choosing 2 ≤
˛ ≤ 4. Empirically, in PLSS one has to calibrate ˛ to find values
that give GCV (A, ˛) as close as possible to PRESS(A). The value of ˛

computed in PLSS is typically used in the MAPLSS building-model
stage, so that we now denote by GCV (A) instead of GCV (A, ˛) for
simplicity. The challenge remains of finding the usual Occam’s
razor balance between ‘goodness’ (of fit and prediction) and
‘parsimony’ (for both the number A of the retained components
and the number of terms entering the model). In order to evaluate
the goodness-of-fit, in MAPLSS the well-known R2(A) criterion,
which is the proportion of the total Y variance accounted for
by the components t1, . . . , tA, does not have anything to add to
the GCV (A), being close (or equal) to 1 due to the exponential
expansion of the column dimension of the design matrix B. So
in order to avoid overfitting problems, we look for parsimonious
models with the best values of GCV (A) criterion.

4.2. The forward stage

In the first phase of the MAPLSS building-model stage, we
individually evaluate all possible interactions. The criterion for
accepting any one candidate interaction is based on the gain in
fit and prediction compared to the main effects only model. Then,
the selected interactions are ordered in decreasing value and are
added one by one to the model only if they improve the GCV of
the preceding model by a relative gain of ε. We propose ε = 0.2
based on a simulation study discussed in Subsection 5.1.

Inputs ε = 20% the threshold to include or not one interaction;
Amax = dimension maximum to explore.

step 0 Construction of the pure additive PLSS model. In this
preliminary phase only the main effects model is
considered. Denoting the main effect model by ‘m’,
decide on the spline parameters as well as on Am giving
the best GCVm(Am) value.

step 1 Individual evaluation of all candidate interactions. In
order to evaluate individually interaction terms, each
interaction ‘i’ is separately added to the main effects.
Let ‘m + i’ denote the order of the model with one
interaction ‘i’. Compute GCVm+i(A) and the selection

www.interscience.wiley.com/journal/cem Copyright © 2009 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 605–617
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criterion, CRIT(Ai), as the relative increase of the GCVm(Am)
after adding an interaction to the main effect model

CRIT(Ai) = maxA∈{1,Amax}
GCVm(Am) − GCVm+i(A)

GCVm(Am)
(9)

Rule: refuse interactions ‘i’ such that CRIT(Ai) < 0 and
order the accepted candidate interactions in decreasing
order. Denote {i1, . . . , iK } that set, eventually empty,
of the accepted interactions ordered by the following
inequalities

CRIT(Ai1 ) ≥ . . . ≥ CRIT(AiK )

step 2 Add successively significant interactions to the pure additive
model. After selecting {i1, . . . , iK }, the ordered set of
candidate interactions, one has to tell whether or not to
accept these. Then, the step 2 phase consists in adding to
the main effects model, interactions i1, i2, etc, successively,
provided that one interaction improves the GCV criterion
of the previous model with respect to the threshold ε.

Finally the following subsection presents the backward phase
in order to prune the model of lowest influence ANOVA terms
according to the range of the ANOVA functions.

4.3. The backward pruning stage

At the end of the forward phase, different possibilities present
themselves for the pruning phase. First, the retained model is
purely additive either because all candidate interactions have
been refused at step 1, or because of ε in step 2, whose
threshold value did not allow inclusion of the largest interaction
i1. Second, the ANOVA decomposition includes some significant
bivariate interaction terms and we have to ask the question: do
we retain the main effects whose predictors also intervene in
some interactions? More generally, the backward phase prunes
the model, removing main as well as small effects in the same
way as PLSS does, by ordering the ANOVA functions according
to the range of the transformations. To obtain the final model
(7), an automatic deleting procedure has been used through the
selection criterion. However, some users, experts in the scientific
domain of the data at hand, prefer manual control of the pruning
process in order to better evaluate which interpretable significant
ANOVA terms are to be preserved in the final sets K1 and K2

characterizing the variables in the model (7).

5. APPLICATIONS AND SIMULATIONS

To illustrate the potential of MAPLSS, we apply it to some
simulated and real datasets found in the literature. At first, in order
to evaluate the domain of accuracy of the component regression
method MAPLSS with respect to the regression tree methods
MARS and BRUTO, we use three classical signal functions at three
different sample sizes (50, 100, 200). The sample size refers to
both the size of the training and test sets. Then we consider a real
dataset to show the richness of the MAPLSS output in a multi-
response problem and its ability to distinguish important and
unimportant predictors.

5.1. Comparison among BRUTO, MARS andMAPLSS on
simulated examples

In this section, we present three simulated examples to compare
the accuracy of MAPLSS against BRUTO and MARS. We also
examine their ability to uncover interaction effects present in
the data by looking at three signal functions with no interaction,
one interaction and two interactions. The values of predictors in
all cases were randomly generated from a uniform distribution
and the pure responses were assigned by formula (10, 11, 12),
respectively. Because the objective is to compare these methods
in a low sample size to variable ratio, we use 100 replications with
sample sizes equal to 50, 100, 200 respectively with ten predictors,
five of which are used to disturb the signal. Before illustrating the
comparison results, we describe the three functions.

The first example ([9], p.34) illustrates what happens when
BRUTO, MARS and MAPLSS are applied in situations where the
true underlying function is purely additive in the predictor
variables (formula 10):

f1(x) = 0.1exp(4x1) + 4

(1 + exp(−20(x2 − 0.5)))
+ 3x3 + 2x4 + x5

+0

10∑
i=6

xi (10)

This function has a nonlinear additive dependence on the first
two variable, a linear dependence on the next three and five
more predictors are used which do not enter the signal.

The second example from Friedman ([9], p. 37) is used to test
the ability of BRUTO, MARS and MAPLSS to uncover interaction
effects when they exist.

The model of example 2 (Equation (11)) contains one
interaction effect involving the first two predictors. There is
a quadratic relationship involving the third predictor, a linear
dependence of the fourth and fifth predictors and the last five
predictors are independent of the response.

f2(x) = 10sin(�x1x2) + 20(x3 − 1/2)2 + 10x4 + 5x5 + 0

10∑
i=6

xi

(11)

Finally, the third example is a variant of the second, but adds an
interaction between x4 and x5.

f3(x) = 10sin(�x1x2) + 20(x3 − 0.5)2 + 20x4x5 + 0

10∑
i=6

xi (12)

So in all three signal functions, the predictors x6, x7, x8, x9, x10

are noisy. To compare the methods over the simulations, we
compute the median and quartiles of the Mean Squared Errors
(MSE) of prediction, as a measure of the prediction accuracy, by
test sample using observations out of training sample. For each
of the signal functions (10, 11, 12), we generate test and training
datasets of equal sizes, and compare the MSE distributions via box
plots (see Figures 1–3). Because of the large number of tuning
parameters, we set the interaction order to 2 for all models.
For BRUTO and MARS, we have set the B-spline degree equal
to 2 and left all the other parameters at their default values. In
MAPLSS, the choice of B-spline parameters has been made by the
heuristic strategy (starting with small degree and knot number
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Figure 1. BRUTO, MARS and MAPLSS box-plot distributions of MSE values
computed on f1, f2 and f3 signal functions for a 200 sample size.

and increasing progressively the model complexity). In all sample
cases, the threshold for accepting or rejecting an interaction is 0.2
and the tuning parameter ˛ in GCV is equal to 2.

In Figure 1, with sample size 200, MAPLSS performs better than
BRUTO and MARS for both f2 and f3 signals while for f1, both
BRUTO and MARS models outperform MAPLSS. At sample size
100 (box plots of Figure 2), we note again that with respect to

Figure 2. BRUTO, MARS and MAPLSS box-plot distributions of MSE values
computed on f1, f2 and f3 signal functions for a 100 sample size.

Figure 3. BRUTO, MARS and MAPLSS box plot distributions of MSE values
computed on f1, f2 and f3 signal functions for a 50 sample size.

the signals f2 (one interaction) and f3 (two interactions) MAPLSS
performs better than MARS and BRUTO, while for the signal f1
(no interaction), BRUTO does best. At the same time for sample
size 100 and 200 comparing MARS with BRUTO, we observe that
MARS performs better than BRUTO for both f2 and f3 and worse
for f1.

Finally, the displays of MSE distributions for each signal
function, for sample size 50, are given in Figure 3.

We observe that MAPLSS has the best performance as
compared to BRUTO and MAPLSS in nearly all cases. While
a comparison between MARS and BRUTO shows that MARS
performs better than BRUTO for only f3 and worse for both f1
and f2. The box-plots of Figure 3 also point out that the spread
of the MSE for MAPLSS model is smaller than both MARS and
BRUTO. In conclusion, in all figures (1, 2 and 3), MAPLSS has both
a smaller MSE and less variance than both BRUTO and MARS with
the exceptions previously mentioned. The box plots show that
the BRUTO performances with respect to signals f2 and f3 are
the worst for all sample sizes. Also note that when the sample
size is increased to 200, (Figure 1) the accuracy of MAPLSS is best
when the signal function presents one interaction (f2) or two
interactions (f3). The exception is signal f1, where MAPLSS does
worse, except in the low sample size case.

5.2. A real example

We now illustrate the capability of MAPLSS on a real data example,
in particular on wine evaluation that has ventured sensory-
chemical related studies.

The data arise from a 2005 sensory study of a research institute
in Campania (Italy) consisting of 15 bottles of white and red wine,
involving two sensorial responses to be simultaneously predicted
by nine chemical predictors. In this application, chemical and
sensory data were collected by an expert panel of judges, to
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Figure 4. (a) The GCV according to the dimension for the linear PLS multi-response model. Total GCV = 0.967. (b) Observed against predicted values for
the two responses in PLS model. Total GCV = 0.967. (c) The GCV according to the dimension for the multi-response PLSS model. Total GCV = 0.336. (d)
Observed against predicted values for the two responses in PLSS model. Total GCV = 0.336. (e)The GCV according to the dimension for the multi-response
MAPLSS model. Total GCV = 0.227. (f )Observed against predicted values for the two responses in MAPLSS models. After pruning, total GCV = 0.224.
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describe and discriminate sensorial stimulus, on commercially
available white and red country D.O.C.G. (guaranteed and
controlled origin denomination) wines, coming from different
areas in Campania. We get nine white wines, A,B,C,D,E,F,G,H,I,
and six red wines AR,BR,CR,DR,ER,FR. An expert panel of judges
evaluated the following sensorial taste characteristics: acidityACI
and structure STR. The chemical predictors are the sulphurous
anhydride (SO2), density (DEN), the percentage of alcohol (ALC),

the dryness (DRY), the pH (PH), the total acidity (ACT) the
presence of phenols, in particular flavonoids (FLA), polyphenols
(POL), and proanthocyanidins (PRO). All measured variables were
scaled to be in the (0, 1) range.

Passing from the linear model, PLS, to the nonlinear ones,
without interaction, PLSS, and with interactions, MAPLSS, the
accuracy of the final model is greatly improved. In Figure 4a,c,e,
we show the GCV prediction plots obtained respectively by PLS,
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PLSS and MAPLSS models and in Figure 4b,d,f we depict the
observed against predicted values for each response in PLS, PLSS
and MAPLSS, respectively. In particular, observe that the total GCV
values range from 96.7% for the linear PLS model to 33.6% for the
PLSS main effects, and finally to 22.7% for the MAPLSS model.
Concerning the response y2 = STR the prediction is consistently
improved in MAPLSS; note that the GCV values range from 61.7%
for the linear PLS model (Figure 4b) to 8.4% for the MAPLSS model
(Figure 4f ). The MAPLSS model was fit using a tuning parameter ˛

in GCV equal to 0.5. In MAPLSS, the choice of B-spline parameters
is the same as the corresponding main effect PLSS model (phase
0) which follows the heuristic strategy of starting with small
degree and knot number and progressively increasing the model
complexity. As a result, the degree has been set equal to 1 and
the knot number equal to 1, for all predictors. Before including
interactions in the PLSS model, the dimension selected was A = 8
according to GCV = 0.336. In MAPLSS, after interaction selection
(forward and backward phases), we then looked at the predictors
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Figure 7. ANOVA plots of the nine retained predictors which more affect the component t2, ordered according to the vertical ranges from left to right
and up to down.
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which had more influence on the two responses. Among the 36
possible bivariate interactions only one was accepted, PH ∗ ACT,
for all responses. The model choice could also be guided by
a subject area expert. As an example, we use the GCV as the
criterion for further refinement of the model; before pruning the
model we obtain the total criterion GCV (8) = 0.227; we decide to
prune the model deleting the main predictor FLA. After pruning,
the GCV criterion does not increase (GCV (8) = 0.224), so we
decide to retain the simpler model with eight main predictors and

one interaction variable. To enrich the interpretation of MAPLSS
output, we add some further plots. In Figure 5, we see the circle of
correlations and the observation plot of the final MAPLSS model.
In the circle of correlations, we note that the two responses are
not correlated and this fact helps to explain the model dimension
number. Furthermore, the response STR is highly correlated with
the first component, while the response ACI is highly correlated
with the second component. Concerning the observation plot, we
simply notice two main observation groups in correspondence of
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Figure 8. ANOVA plots of the nine retained predictors which more affect the response ACI, ordered according to the vertical ranges from left to right
and up to down.
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white and red wines, and the presence of two white wines (A, D)
in the group of red wines. To better interpret the observation plot,
we present the plots of the transformed predictors (Figures 6, 7)
with respect to the latent variables t1 and t2 (useful to explain the
predictor influence on the components or latent variables). Thus
in Figures 6 and 7 we give a vision of the nonlinear relationships
between the latent variables or components of the model with
the predictors. In Figure 6 concerning the influence of predictors

on t1, the first term in the predictor list is DRY followed by PRO
and POL (see Figure 6a,b,c, respectively), etc. We observe that
high values of DRY given principally not only by red wines but
also by two white wines (A,D) significantly influence the first
component t1. From Figure 7a to 7f, we look at the effects of
predictors on the second component t2; this time the first term
in the list of the most influential predictors is PH followed by
ACT and by POL (see Figure 7a,b,c, respectively), etc. As usual, we
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Figure 9. ANOVA plots of the nine retained predictors which more affect the response STR, ordered according to the vertical ranges from left to right
and up to down.
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Figure 10. The barplots of the nine retained predictors which affect the responses, ACI and STR, respectively.

interpret their direct or inverse relationships and their effects on
t2, on the base of their slopes. For example, large values of PH of
wines ER, BR, FR, AR influence significantly the component t2.

In order to understand the influence of the predictors on the
responses, in particular with respect to the response STR we
report the values of the predictor importance before and after
pruning the model

1) Complete Moldel: Main effects plus PH ∗ ACT:
GCV = 0.08

DRY PRO ALC DEN ACT SO2 PH PH*ACT POL FLA
1.941 1.385 1.033 1.022 0.914 0.891 0.658 0.641 0.542 0.303

2) Prune low ANOVA terms deleting themain effect FLA:
Final GCV=0.08

DRY DEN ACT PRO PH*ACT ALC PH SO2 POL
2.096 1.778 1.496 1.478 1.346 1.109 1.098 1.032 0.982

Notice that to obtain a more parsimonious final model, the
main effect FLA has been removed despite a non-negligible
influence in the first pass model and, as a consequence, in the
second pass model, the influence of the interaction, PH ∗ ACT, is
increased.

In Figures 8 and 9, we graphically represent the contributions of
the ANOVA terms of the second pass model on the two responses
ACI and STR, respectively. From Figure 8a–f, we look at the effects
of predictors on the response ACI, interpreting their direct or
inverse relationships, and their effects on the base of their slopes.
We read for each predictor in the list the low or large values,
which belong to different wines, characterizing the responses.
For example in Figure 8a, large values of PRO of red winesDR, CR
characterize greatly the response ACI. Note that the interaction
effect, PH*ACT, has played a different role in the prediction of
ACIwith respect to STR; in fact the third term in the predictor list
of ACI is the interaction term (see Figure 8c). In Figure 9, the first
term in the predictor list is DRY followed by DEN and ACT (see
Figure 9a,b,c, respectively),etc. In Figure 9a, low values of DRY of
white wines G, I characterize greatly the response STR.

At the end, to resume the predictor influence on the responses
in Figure 10, we represent graphically the contributions of the
ANOVA terms previously shown in Figures 8 and 9, for each of
the two responses, using the bar plots of predictor ranges. As you
can see, the predictor contributions are different for the pair of
responses.

6. CONCLUSION

A statistical method for nonlinear multivariate regression of
noisy data in high dimensions, MAPLSS, has been developed in
this paper. The MAPLSS offers advantages to current methods
especially in cases where predictors are correlated, interaction
effects are present, where there is a low sample size to number
of variables ratio and where outliers may be present. The
performance of the proposed method has been compared
to known nonlinear models, as BRUTO and MARS in terms
of their accuracy via simulation studies. The multi-responses
model, MAPLSS, extends PLSS using an automatic selection of
interactions. Like PLS and PLSS, it avoids the problems of both
multicollinearity and ill conditioning. Like MARS, it automatically
selects the variables and their interaction order. As it has been
shown by examples and simulations, MAPLSS is an efficient
regression tool in the difficult real-life context.

In our analysis, the MAPLSS model shows the best performance
in terms of MSE, for all small datasets (samples of sizes 50, 100,
200) to uncover interactions only when they really exist. At the
end, the analysis of the real data has shown that one of the
advantages of the multi-response MAPLSS algorithm, being a
component regression based method, is that it permits, in a back-
wards pruning stage, the elimination of predictors, which may un-
necessarily complicate the model, but leaving their interactions
resulting in a more accurate and more parsimonious model.

7. IMPLEMENTATION

Multivariate Additive Partial Least Squares via Splines has been
programmed by the first and second authors in R language. The
implementation of the program was easy thanks to the availability
of most algorithms which Prof. J. F. Durand developed for PLS via
Splines. The real dataset and the program can be downloaded at
the web address www.jf-durand-pls.com, or they can be obtained
from the first author.
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